
International Journal of Theoretical Physics, Vol. 32, No: 10, 1993 

Jaueh-Piron Orthomodular Posets and Propositional 
Systems: A Comparison 

C. P i r o n  I 

Received April 30, 1993 

We compare the structures obtained via orthomodular posets and via proposi- 
tional systems, discussing some examples of the links between them. Despite 
some analogies, the two structures are fundamentally different. 

Quantum logics and propositional systems are different structures built 
f rom different points of  view. Curiously, in spite of  these differences, many 
examples and some no-go theorems are the same in the two cases. Let us 
first recall the two approaches before discussing some correspondences 
between these results. 

Quantum logic was initiated by Birkhoff and yon Neumann  in their 
famous article, "The logic of  quantum mechanics" (Birkhoff and yon 
Neumann,  1936). The primitive notion is the proposition. A proposition 
for a quantum system was there taken to be a proposition in the ordinary 
sense, the implication ~ was noted < ,  and an effort was made to define 
the "and,"  "or ,"  and "negation".  For  them no difficulties seem to appear 
with the negation; they just defined a convolution a ~ a '  such that a"  = a 

and a < b implies that b '  < a ' ,  and denoted by I the triviality a v a '  and by 
O the impossibility a A a' .  They then assumed that Lf, the set of  proposi- 
tions, is a lattice and in fact even an orthocomplemented projective 
geometry. But in the same article they arrive at the conclusion that a v b 
and a A b cannot be directly interpreted as "o r"  and "and"  except for the 
case where a and b generate a Boolean sublattice as they do in the usual 
propositional calculus. This is the origin of  the notion of a a -or thomodular  
poset L. Formally such a structure is a (partially) ordered set L with an 
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orthocomplementation a w-~ a '  such that V ia i  exists for any countable 
sequence of pairwise orthogonal elements a ; eL  and the orthomodular law 
a < b =~ b = a v (a' A b) is satisfied. On such a structure one defines a 
state as a generalized probability, that is, a map a ~ s (a )~[0 ,  1] such that 
for any countable sequence of pairwise orthogonal elements a i E L  we have 
that s ( V  ~ a~) = ~ i s ( a ~ ) .  Using the orthomodular law, it is easy to see that 
a < b implies that s(a) < s(b), a fundamental relation for the interpretation 
of the state in terms of probabilities. 

O n  the other hand, in the Aerts-Piron approach the primitive notions 
are experimental project and state. By experimental project (or question in 
short), Aerts and Piron mean an experiment, as complicated as it may be, 
that you can eventually perform on the system and where what would be 
the positive result is defined in advance. Let us consider a collection of such 
questions (relative to a given well-defined system). Then we can define new 
question by the following two operations: 

The inverse: c~ ~ is the new question obtained just by interchanging the 
positive and negative results, 

The product:  1-[~ ~ is the new question defined for a family of given 
questions by the following prescription: choose as you wish in the given 
family one question ei that you will perform. The positive result is the one 
defined by the chosen ei. 

It is easy to see that the collection of questions can always be 
considered to be closed under these two operations. A given question ~ is 
called true if the positive result is certain before one decides to perform the 
experiment. Then c~ </? (c~ is stronger than/3) if/~ is true each time ~ is. We 
write 5 ~ for the complete lattice built from the equivalence classes of 
questions, each equivalence class being called a property. A property is said 
to be actual when all the equivalent questions of the corresponding class 
are true. 

In this approach the state of the system is defined as the collection of 
all actual properties. Two states E1 and g2 are called orthogonal if there 
exists a question e for which c~ is true in gl and e -  is true in E 2. From 
physical considerations the lattice 5O turns out to be not only complete, but 
also atomistic and orthocomplemented. 

As one can see, orthomodular posets (quantum logics) and complete 
atomistic orthocomplemented lattices are different objects with different 
structures and different physical interpretations. The first describes what 
can be said about the system in terms of propositions, in analogy with the 
usual logics. The second, on the other hand, describes what you can do 
with the system and in fact an actual property is nothing other than an 
element of reality in the Einstein sense. No reference is made to classical or 
quantum physics or to the probability concept. 
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Now, when one adds more structure these two different mathematical 
objects become formally very similar. 

1. a o--orthomodular poset is called unital if for every a there is a state 
s such that s(a) = 1. It is a Jauch-Pi ron  logic if every state satisfies the 
so-called Jauch-Pi ron  condition: If s ( a ) = s ( b ) =  1, then there exists a 
c < a such that c < b and s(c)= 1. The two following results are well 
known: 

Theorem (Ptfik and Pulmannovfi, 1991). A unital Jauch-P i ron  logic 
for which every orthogonal set is at most countable is a complete lattice. 

Theorem (Rfittimann, 1977). A finite unital Jauch-Pi ron  logic is 
Boolean. 

2. In addition, we can impose that such a complete, atomistic, or- 
thocomplemented lattice is also weakly modular: 

a < b  ~ a v ( b A a ' ) = b  

and satisfies the covering law: 

I f p  is an atom ( i f p  covers 0) and if a Ap =0 ,  then a v p  covers a. 

We have then the following two results: 

Theorem (Piron, 1964; Amemiya and Araki, 1966). Any complete, 
orthomodular,  atomic lattice satisfying the covering law (that is, any 
propositional system) is isomorphic to a generalized Hilbert space (or a 
direct sum of such spaces with possibly non-Desarguian orthogonal 
planes). 

Theorem (Eckmann and Zabey, 1969). Every finite propositional sys- 
tem is Boolean. 

Finally, let us recall a result of D. Aerts. The set of properties for the 
joint system of two separated quantum entities also turns out to be a 
complete, atomistic, and orthocomplemented lattice, but such a lattice is 
never weakly modular and never satisfies the covering law. This result 
causes difficulties in the orthodox quantum logic approach, where weak 
modularity plays a fundamental role in the interpretation (Moore, 1993). 
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